

Dario Barberis

Physics with "2nd Generation" Pixel Detectors

Pixel Detector Evolution

- First generation (developed in early 90's):
 - minimal circuitry in pixel (pre-amp, discriminator, trigger coincidence, flip-flop)
 - common threshold
 - ~1 µm technology
 - full matrix (slow) read-out
 - used by CERN fixed-target heavy ion experiments (Omega3/LHC1 chip, 50x500 μm² pixels) and Delphi at LEP for forward tracking (330x330 μm² pixels)

Pixel Detector Evolution

- Second generation (developed since the mid-90's):
 - complex circuitry in pixel (pre-amp, individually adjustable discriminator, pulse height measurement, read-out logic)
 - (rad-hard) deep sub-micron technology
 - sparse (fast) read-out
 - radiation-hard sensors, electronics and infrastructure
 - to be used by:
 - the ATLAS and CMS collider experiments at LHC
 - the BTeV B-Physics experiment at FNAL
 - the ALICE heavy-ion experiment at LHC

Need for Pixel Detectors

- Events at (near) future colliders are characterized by:
 - high rates (~20 p-p events per bunch crossing at LHC design luminosity)
 - high particle multiplicities (up to 8000 charged particles per unit of rapidity in heavy ion collisions at LHC)
- Pixel vertex detectors are needed because of their:
 - excellent 3-D position resolution (≈10 μm)
 - excellent 2-track resolution (≈100 µm)
 - good timing resolution (better than one bunch crossing)
 - low occupancy

ATLAS & CMS: tracking

ATLAS Inner Detector:

- 2/3 layers of Pixel Detectors
- 4 layers of Silicon Microstrips
- Transition Radiation Tracker (~35 points/track + TR info for electron identification)

• CMS Tracker:

- 2/3 layers of Pixels
- 10 layers of Silicon Microstrips (4 Inner, 6 Outer)

Pixel 2002, Carmel (Ca), Sept. 2002

ATLAS & CMS: tracking

- ATLAS and CMS are THICK trackers:
 - each pixel layer contributes >2% X₀
 - plus global support and cooling structures and thermal/EMI screens
- The impact parameter resolution depends strongly on:
 - radius of innermost pixel layer
 - thickness of pixel layers
 - radius and thickness of beam pipe
- Example:
 - effect of (1 cm) increase of beam pipe and B-layer radius in ATLAS: now

$$\sigma (d_0) \approx 10 \oplus \frac{98}{p_T \sqrt{\sin \vartheta}}$$

ATLAS & CMS: vertexing

- At LHC design luminosity ~20 interactions occur per beam crossing
- They are spread with $\sigma(z) = 5.6$ cm
- Need identification of the primary vertex of the hard (triggered) interaction and reconstruction of any secondary vertices in jets
- Pixel detectors allow primary vertex reconstruction with $\sigma(z) < 50 \mu m$

ATLAS & CMS: b tagging

- Several algorithms tried by CMS and ATLAS, based on:
- impact parameter (track counting and jet probability)
- secondary vertex reconstruction
- decay length

- •Typical performance for both experiments:
- average: $\epsilon(u) \sim 1\%$ for $\epsilon(b) = 60\%$ for "interesting" jet p_T range (50 < p_T < 130 GeV) and all rapidities
- best: $\varepsilon(u) \sim 0.2\%$ for $\varepsilon(b) = 50\%$ for $p_T \sim 100$ GeV and central rapidity

ATLAS & CMS: hadronic τ reconstruction

- If 3-prong τ events can be used in addition to 1-prong τ decays, a factor of 1.7 of signal events are gained for Higgs and Supersymmetry
- 3-prong decay vertices can be reconstructed with sufficient precision:

- MSSM: 5 Higgs bosons: h, H, A, H+,H-.
- At tree-level boson masses are functions of m_A (CP-odd Higgs boson) and $tan(\beta)$.
- LEP: $M_A > 91.9$ GeV and $tan(\beta) > 2.4$ (95% CL).
- M_A in "few 100 GeV" range for reasonable parameters

ATLAS & CMS: Higgs

W

• Let's take the channel gg \rightarrow ttH \rightarrow ttbb as example:

Very sensitive to b-tag performance (4 b-jets)

 Needs full reconstruction of both top decays to suppress combinatorial background

Remaining backgrounds:

• irreducible: direct ttbb production (QCD & EW)

• reducible: ttjj and ttjb with misidentification of non-b jets

Process	σ (pb)	σx BR (pb)
ttH(120)	0.55	0.11
ttjj, ttjb	473	138
ttbb (QCD)	8.6	2.5
ttbb (EW)	0.90	0.26

Associated Higgs production: PIXEL the ttH channel

• Take the $\varepsilon(b)$ = 60% point on the efficiency vs rejection curve: —

 Get average rejection ~100 for light quarks and ~7 for charm

- Use p_T and η dependence
- Produce the bb mass spectrum:

- The background is dominated by irreducible QCD ttbb events (b-tag performance already good enough!)
- The statistical significance is $S/\sqrt{B} \sim 3.5$ for an integrated luminosity of 60 fb⁻¹ (3 years at luminosity $2x10^{33}$ cm⁻²s⁻¹)

MSSM: the tth channel

- In the Minimal Supersymmetric Standard Model, the tth (h → bb) channel can have a "reasonable" cross-section
- Cross-section depends on MSSM parameters
- Larger than Standard Model ttH $(H \rightarrow bb)$ production for most parameter space
- Significance larger than 5σ ("discovery threshold") over most of parameter space for 100 fb⁻¹ of integrated luminosity

5σ discovery contour in the $(m_A, tanβ)$ plane for MSSM tth, h→bb

ATLAS & CMS: Supersymmetry

- \bullet Quite a few Susy final states with b's and/or τ 's
- Good b/τ reconstruction allows
 - full or partial reconstruction of Susy events
 - determination of some sparticle masses
- Susy rates dominated (depending on Susy model) by production of
 - <u>gg</u>
 - ĝĝ
 - **qq**
- Lightest Susy particle $(\tilde{\chi}^0_1)$ is
 - stable
 - neutral
 - weakly interacting (escapes the detector)
 - gives "missing energy"
- Classical signature for Susy production:
 - Excess of final states with
 - missing energy (♥)
 - several hard central jets arising from qq, qg, ...

Supersymmetry: the h → bb channel

- Example: using b reconstruction in mSugra models:
 - h⁰ → b b in cascade decays
- Decay chain:

$$\widetilde{q}_L \rightarrow \widetilde{\chi}^0_2 \widetilde{q}$$
 (~30%)
 $h \widetilde{\chi}^0_1$ (70 to 90%)
 $b \overline{b}$ (80 to 90%)

- Analysis procedure:
 - Get clean sample of $h \rightarrow bb$
 - Reconstruction of h → bb decay
 - Get m_h
 - Partial reconstruction of $\vec{q_L} \rightarrow \vec{\chi^0}_2 \, q \rightarrow h \, \vec{\chi^0}_1 \, q$
 - Get invariant mass of jbb system
 - sensitive to ma
 - Get p_⊤ distribution of 2nd hardest jet
 - \bullet sensitive to $m_{\overline{q}_{I}}$ or $m_{\overline{q}_{R}}$

Invariant mass of bb system:

Events with M_{bb} within \pm 25 GeV of peak:

SM bkgd < 10% of signal Susy bkgd < 20% of signal Fit of peak: $\Delta m_h \sim 1$ GeV

Observability of the $h \rightarrow b\overline{b}$ channel

Observability 5σ -contours of h \rightarrow bb from SUSY cascade:

B Physics: Goals

- Measure:
 - CP violation in B decays
 - B_s mixing
 - rare B decay rates
- Look for "forbidden" decays
- Measure precisely Standard Model parameters
- Test for inconsistencies of the Standard Model
- Search for Physics beyond the Standard Model

B Physics: BTeV

- CM energy: 2 TeV
- Luminosity: 2 10³² cm⁻²s⁻¹
- Integ. lumin.: 2 fb-1/year

- 30 pixel detector stations
- Level-1 pixel track trigger:
 - track reconstruction
 - primary vertex reconstr.
 - displaced track selection
- Particle identification:
 - RICH (liquid+gas radiators)
- Photon detection:
 - PbWO₄ calorimeter
- Muon measurements:
 - toroids, proportional tubes, trigger

B Physics: BTeV

- Precision measurements of CKM parameters:
 - $\sigma(\text{sin}(2\beta))$ ~ 0.017 after 1 year using B⁰ \rightarrow J/ ψ K⁰_s
 - sign(β) determined using B⁰ \rightarrow J/ ψ K⁰, K⁰ $\rightarrow \pi \ell \nu$
 - Asymmetry of $B^0 \to \pi^+\pi^-$ measured to ±0.030 in 1 year
 - Penguin contribution determined by Dalitz plot analysis of $B^0 \to \rho\pi \to \pi^+\pi^-\pi^0$, sensitive to both $\sin(2\alpha)$ and $\cos(2\alpha)$: $\sigma(\alpha) < 4^\circ$ in 2 years
 - $\sigma(\gamma)$ ~ 4-8° in 1 year using $B_s \to D_s^+ K^-$, $B^- \to D^0 K^-$, $B^- \to K_s \pi^-$, $B^0 \to K^+ \pi^-$, $B^0 \to \pi^+ \pi^-$ and $B_s \to K^+ K^-$
 - $\sigma(\chi)$ ~ 0.024 in 1 year (but expect χ ~ 0.03 !!!) using $B_s \to J/\psi \, \eta \to \ell^+\ell^-\gamma\gamma$ and $B_s \to J/\psi \, \eta' \to \ell^+\ell^-\rho^0\gamma$

B Physics: BTeV

- Consistency checks of the Standard Model:
 - is it true that $\alpha + \beta + \gamma = 180^{\circ}$?
 - check of χ : $\sin(\chi) = \lambda^2 \frac{\sin(\beta)\sin(\gamma)}{\sin(\beta + \gamma)}$
 - measure Δm_s and compare with Standard Model global fit (~17 ps⁻¹)
- New Physics can also produce high(er) rates of flavourchanging neutral current decays:
 - look at B → K ℓ⁺ℓ⁻ and B → K* ℓ⁺ℓ⁻ decays
 (Dalitz plots and ℓ⁺ℓ⁻ mass spectrum)

B Physics: ATLAS & CMS

- ATLAS and CMS are well equipped for broad B-Physics programme
- Beauty trigger strategies will be adapted according to luminosity conditions: di-lepton L1 triggers at higher luminosities, single-lepton at lower luminosities, followed by track reconstruction
- In CP violation the main emphasis will be on underlying mechanisms and evidence of new physics. ATLAS and CMS can measure (in 1 year at low luminosity) $\sin(2\beta)$ with precision similar to BTeV
- Sensitivity to Δm_s goes far beyond SM expectations. All parameters of the decay $B_s \to J/\psi \, \phi$ can be measured with 1% precision (12% for $\Delta \Gamma_s$)
- Rare decays B $\to \mu\mu$ can be measured also at nominal LHC luminosity (10³⁴ cm⁻²s⁻¹). Will also measure branching ratio of B_s $\to \mu\mu$ which is in SM of order 10⁻⁹. Precision measurements will be done for B \to K* $\mu\mu$.
- Beauty production and correlations at central LHC collisions can be measured for QCD tests

B Physics: ATLAS & CMS

Rare decays: $B^0_{d,s} \rightarrow \mu^+ \mu^- X$

$$B_d^0 \rightarrow K_d^0 + \mu^-$$
, $B_d^0 \rightarrow \rho^0 \mu^+ \mu$, $B_s^0 \rightarrow \phi^0 \mu^+ \mu^-$

$$BR(B_d^0 \to \rho^0 \mu^+ \mu^-)/BR(B_d^0 \to K_d^0 + \mu^+ \mu^-) = k_d |V_{td}/V_{ts}|^2$$

Could be determined to ~15% after 30 fb⁻¹

B Physics: b production cross-section

Bjorken-x region: one of B's in detector volume: BTeV and LHCb most sensitive to knowledge of structure functions at very low x

Common part of phase space: opportunity for normalization checks in Beauty cross-section measurements

Dario Barberis – Genova University/INFN

22

Inner Tracking System

Silicon Pixel Detector (2 layers)

Dario Barberis - Genova Univ

Pixel 2002, Carmel (Ca), Sept. 2002

- open c, b production: natural normalization for quarkonia (J/ψ, Υ) production
- B mesons source of non-prompt J/ψ
- sensitive to conditions of initial reaction phase
 - structure functions
 - "thermal" charm?
- but parton energy loss in deconfined matter alters momentum spectrum
- window on hard processes

- Exclusive charm hadronic decays: full reconstruction of decay topology
- Identification strategy:
 - combinatorial association (initial S/B ~ 10⁻⁶)
 - selection on high transverse impact parameter track pairs
 - collinearity of D momentum vector with primary vertex
- D⁰ signal after 15 days of data taking: significance ~ 35

Semileptonic decays: selection on impact parameter of electrons (TRD)

Semileptonic charm yield for $p_T > 1$ GeV and $d_0 > 100 \mu m$:

$$S/(S+B) = 0.5$$

S ~ 1.5%

Semileptonic beauty yield for $p_T > 3$ GeV and $d_0 > 100 \mu m$:

$$S/(S+B) = 0.9$$

S ~ 2%

PIXEL PIXEL

Conclusions and Outlook

- Pixel vertex detectors are essential for the forthcoming generation of experiments, for the reconstruction of:
 - ✓ primary interaction points (separation of multiple interactions)
 - \checkmark b and τ decay vertices (QCD, Higgs and SUSY Physics)
 - ✓ tracks in high-density environments (high luminosity or heavy ions)
- ➤ Performance adequate for the time being, but main limitations to physics performance are due to:
 - ✓ material effects (hadronic interactions, photon conversions)
 - √ data rate and dead time at high luminosity (data loss)
 - ✓ yield and efficiency? radiation damage?
- ➤ Ideas for R&D for 3rd generation detectors already around!